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Plant water use theory should
incorporate hypotheses about
extreme environments,
population ecology, and
community ecology

Summary

Plant water use theory has largely been developed within a plant-

performance paradigm that conceptualizes water use in terms of

value for carbon gain and that sits within a neoclassical economic

framework. This theory works very well in many contexts but does

not consider other values of water to plants that could impact their

fitness.Here,we survey a rangeof alternative hypotheses for drivers

of water use and stomatal regulation. These hypotheses are

organized around relevance to extreme environments, population

ecology, and community ecology.Most of these hypotheses are not

yet empirically tested and some are controversial (e.g. requiring

more agency and behavior than is commonly believed possible for

plants). Some hypotheses, especially those focused around using

water to avoid thermal stress, using water to promote reproduction

instead of growth, and using water to hoard it, may be useful to

incorporate into theory or to implement in Earth System Models.

Introduction

Predicting plant water use for species with differing traits and across
environmental conditions is a central challenge for ecophysiology
(Venturas et al., 2017; Kannenberg et al., 2022). Accurate
predictions are critical for fundamental knowledge of plant
biology, as well as for upscaling to ecosystem fluxes, for example,
via Earth System Models (Christoffersen et al., 2016; Fisher
et al., 2018). Current marginal gain theory for water use (Wang
et al., 2020) has been developed from a foundation of stomatal
optimization framed in terms of maximizing carbon gain (Cowan
& Farquhar, 1977). This theory proposes that plants maximize
A�Θ, where A represents carbon gain and Θ represents some
carbon penalties or costs, for example, relating to soil drying, or
hydraulic failure. If E is the amount of water plants use, then
mathematically, maximization occurs when ∂A

∂E ¼ ∂Θ
∂E , that is, when

the marginal gain equals the marginal penalty (Wang et al., 2020).
Implementations of theory make different assumptions about A

andΘ, for example, whether the timescale of each is instantaneous
or temporally extended (i.e. whetherA andΘ are defined as a rate or
a quantity), whether the biological scale is a single leaf or a whole
plant, and whether the environment is constant or variable. Often,
E is assumed to depend only on stomatal opening, so the term
‘stomatal optimization theory’ is commonly used interchangeably
with ‘marginal gain theory’.

Current iterations of marginal gain theory are widely considered
reliable and generally suggest that the penalty depends on vapor
pressure deficit, or soil water potential, or other similar variables
(Wang et al., 2020; Kannenberg et al., 2022), leading to the
development of marginal gain models that consider the entire soil–
plant–atmosphere continuum (Sperry et al., 2016; Wolf
et al., 2016). For example, some empirical models based on vapor
pressure deficit (Leuning, 1995; Medlyn et al., 2011) are widely
used to parameterize Earth System Models, and predictions are
often reliable at leaf and ecosystem scale (Franks et al., 2018).
Nevertheless, substantial uncertainty remains about the biological
and temporal scales over which this optimization is valid (Feng
et al., 2022).

Plant water use may be more complex than what most
implementations of marginal gain theory indicate. As a first
example, theory often fails in hot environments. Previous efforts to
model gas exchange at higher thermal stresses (Franks et al., 1997;
Eamus et al., 2008) have yielded results that are at odds with
stomatal optimization theory thought to apply at short timescales
(Medlyn et al., 2011).Heat avoidance can occur, where water use is
optimized not to maximize instantaneous carbon gain per unit
water loss (i.e. marginal gain theory), but instead to prioritize
evaporative cooling that avoids thermal stress/mortality at high
temperatures (Chaves et al., 2016; Slot et al., 2016; Urban
et al., 2017; Blonder & Michaletz, 2018; Aparecido et al., 2020;
Marchin et al., 2022a) and thus enables sustained long-term carbon
gain. As a second example, stomatal optimization theory thought to
apply to isolated individuals can fail when plants are measured in
community contexts. Recent models of stomatal optimization
under competition (Wolf et al., 2016; Lu et al., 2020) indicate that
water use strategies should change when neighbors compete for
water. This prediction of water use shifting when growing with
competitors vs alone has been upheld in at least two sets of
experiments (Vysotskaya et al., 2011; Zenes et al., 2020).

Conceptual framing

Marginal gain theory has been limited in four practical ways. First,
validations of theory have been carried out primarily on a limited
set of species, often crops (von Caemmerer & Evans, 1991; Harley
et al., 1992). While these cases are clearly of high interest, they
represent a limited and biased subset of plant functional and
evolutionary diversity. Second, tests of theory have been limited in
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extreme (very hot and concurrently very wet or very dry)
environments (Schulze et al., 1973; Aparecido et al., 2020;
Grossiord et al., 2020). This limitation is especially critical for
accurate predictions in response to novel environmental conditions
(Williams& Jackson, 2007) projected under global change. Third,
most data come from measurements of leaves, isolated from the
whole-plant context, or individual plants, isolated from their
population or community contexts. While such data provide
snapshots of behavior under controlled conditions, they may not
accurately represent behavior in complex natural conditions.
Fourth, theory may not yet provide a sufficient description of all
the biological processes affecting water use. This reflects either a
trade-off between model complexity and usefulness (Harrison
et al., 2021), or alternatively, incomplete process knowledge or data
for parameterizing models.

Marginal gain theory is also limited by its foundational
assumption that plant water use is a problem analogous to the
rational actor problem in classical (Smith, 1776) and neoclassical
economics (Jevons, 1879). Both propose that the leaf or plant
(analogously, the individual) has evolved mechanisms (chooses
actions) that maximize performance (maximize utility or diminish
marginal utility) due to natural selection (self-interest). Both also
assume that the optimization can be conceived in terms of a single
measure and store of value, carbon (money). This assumption has
been widely critiqued in economics (Hollis & Nell, 1975;
Sen, 1977), as it leads to both inaccurate predictions of human
behavior (Veblen, 1898; Fullbrook, 2004), and also negates the
possibility of considering cooperative behavior and multiple
incommensurable types of values relevant to decision-making (e.g.
‘human wellbeing’ or ‘ecosystem health’; Jackson, 2016). Marginal
gain theory for plant water use draws from this economic heritage
and implicitly requires us to accept the premise that plant behavior
can be collapsed to the single currency of carbon, and the single
objective of getting asmuch of it as possible. This logic also produces
the concepts of ecosystem service valuation (Reid et al., 2005) and
natural capital (Costanza et al., 1997), which propose that money-
based prices or valuations can be given to values thatmay actually not
be commensurable. Returning to plant water use, it thereforemay be
useful to cast off the shackles of old economic ideas, and embrace a
broader perspective on the values of water to plants that are not
defined as, or priced in terms of, carbon gain.

Our central hypothesis is that the value of water to a plant extends
far beyond its immediate value for instantaneous carbon gain,
requiring either extension ofmarginal gain theory tomore biological
and temporal contexts, or alternatively development of new theory
that asks how water use influences fitness–not ecophysiological
performance. We survey hypotheses that operate at different
biological and temporal scales (illustrated in Fig. 1) that might cause
current theory to fail, which are linked to performance in extreme
environments (‘E’ hypotheses), to life history andpopulation ecology
(‘P’ hypotheses), and to species interactions and community context
(‘C’ hypotheses). We then sketch a range of observed and yet
unobserved hypotheses that are still on the frontier of current theory
and that may run contrary to current theory’s predictions.

Some of the hypotheses we propose are at odds with current
understandings of how plants process information and ascribe a

level of agency to plants that is not widely considered reasonable at
individual or population scale. There is also little evidence to date
that plants have evolved mechanisms to enable such complex
behavior. Nevertheless, these strategies remain an underinvesti-
gated conceptual possibility. We used agentive terms within these
hypotheses below because they are standard within game theory
and computer science. Additionally, the limits of plant agency,
behavior, communication/sensing, and social interactions remain
poorly studied (Silvertown & Gordon, 1989; Karban, 2015; van
Loon, 2016).

Hypotheses relating to extreme environments

E1. Avoiding thermal damage or mortality

High transpirationmay reflect prioritization of leaf cooling to avoid
heat damage or death in thermally extreme environments (Fig. 2a).
This appears contrary to the stomatal optimization prediction (over
short timescales) that stomata should close to prevent hydraulic
failure and also appears maladaptive because of the reduced
efficiency of photosynthesis at high temperatures. However,
increasing transpiration at high temperatures actually can be
optimal over long timescales if water is available and doing so
prevents leaf thermal damage or mortality, that is, if it promotes
future carbon gain, and offsets the loss of carbon invested in the
construction of the leaf (Blonder &Michaletz, 2018). This type of
optimization is difficult to capture in analytic models because leaf
mortality is not reversible: if a leaf has exceeded a critical
temperature even once, its future carbon gain is zero, regardless
of the temperature the leaf later obtains.

Low transpiration rates prevent evaporative cooling and lead to
high temperatures in leaves (Gates, 1968; Monteith & Unsworth,
2013) and also limit advective heat transfer by xylem sap, which can
lead to high temperatures in branch and stem phloem, xylem, and
sapwood (Swanson, 1994). High leaf and branch temperatures, if
sustained, could cause permanent (or costly-to-repair) biochemical
damage, structural changes and reduced hydraulic conductivity of
xylem (Michaletz et al., 2012), or cell and tissue necrosis (Teskey
et al., 2015). Failure to evaporatively cool can also cause mortality.
For example, during a hot drought in Australia, crown dieback in
urban trees was negatively correlated with the critical temperatures
for photosystem II dysfunction, while leaf water potentials showed
trees were not severely water stressed (Marchin et al., 2022b). This
suggests that dieback was driven by heat stress (not embolism)
resulting from reduced transpirational cooling that enabled leaf
temperatures to exceed a critical threshold.

Cooling is likely to be important in plants with relatively carbon-
expensive and/or evergreen leaves, in environments that experience
transiently high temperatures, especially when combined with high
soil water availability (Aparecido et al., 2020). For example,
stomatal responses to vapor pressure deficit and temperature can
become decoupled in some desert plants (Schulze et al., 1973).
There are likely more efficient ways to keep leaves cool via trait
evolution over longer timescales, or alternatively higher thermal
tolerances to occur via phenotypic plasticity or evolution. These
latter approaches are likely taken by many hot-adapted species,
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which can see leaf temperatures reach 48–49°C associated with
midday depressions of photosynthesis and transpiration, while
CAMplants can exceed 50°C leaf temperature duringmidday, and
some cacti obtain temperatures> 50°C, with heat tolerances up to
69°C (Smith et al., 1984). For example, the Rubisco activase
isoform in Agave remains active at up to 50°C, 10°C higher than
Oryza isoforms (Shivhare & Mueller-Cajar, 2017).

Several underlying physiological processes could generate this
cooling response. The most straightforward possibility is stomatal
opening at high temperatures. Sensory mechanisms remain
unknown, but may include the detection of unfolded proteins

and changes in membrane fluidity (Hayes et al., 2021). Abscisic
acid (ABA)may play a role, as its accumulation is linked to reduced
transpiration and increased hydraulic conductivity during drought
stress (Muhammad Aslam et al., 2022). Alternatively, other signal
transduction mechanisms could cause high-temperature stomatal
opening (Kostaki et al., 2020). Another speculative possibility is
stomatal popping, in which pressurized hot air in intercellular
spaces forces guard cell opening (Brix et al., 1992; Aparecido
et al., 2020). This is unlikely because such popping would occur
only once, after which depressurization would occur and prevent
further water flux. Alternatively, transpiration fluxes could arise

Seasonal Lifetime

Leaf

Individual

Population

Community

Temporal scale

Biological scale

Categories of plant water use hypotheses
E: Extreme environments
P: Population ecology
C: Community ecology
M: Marginal gain

Instantaneous

C2. Hoarding and spite

C1. Mechanisms that promote coexistence

E2. Minimizing respiration costs

E1. Avoiding thermal damage and mortality 

E3. Shading via parasol effects

C4. Positive species interactions

C3. Bluffing and learning

C5. Negative species interactions

P1. Time discounting 

P3. Leaf lifespan effects

P5. Non-adaptive mechanisms

P2. Deadline effects

P4. Tradeoffs among fitness components

M. Extant theory

Fig. 1 Overview of hypotheses considered in this manuscript. Hypotheses are arranged by biological scale (vertical) and temporal scale (horizontal) at which
theymight operate. They are colored by category: E, extreme environments (orange); P, population ecology (green); C, community ecology (purple). They are
also contrasted with extant theory: M, marginal gain (red).
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from high cuticular conductance, which is known to increase at
higher leaf temperatures, due to changes in the physical properties
of cuticular waxes. This last cooling mechanism seems most
plausible and has been described in desert (Bueno et al., 2019) and
tropical (Slot et al., 2021) species, though it is unclear yet whether it
is adaptive.

Cooling can also occur via leaf positioning rather than
transpiration. For example, in Piper auritum, a tropical species
associated with high light conditions in canopy gaps (Chiariello
et al., 1987), high water use results in midday wilting. This

reduces the direct sunlight that hits the leaves in their exposed
habitat, which in turn decreases leaf temperatures. The
reduction in incident irradiance caused photosynthesis to
decrease, but less so than transpiration, so water use efficiency
is improved by the avoidance of midday sun. The continued
photosynthesis, albeit at reduced rate, suggests that this strategy
enables optimization of time-integrated carbon capture. Similar
behavior is observed in wheat, where leaf erectness and leaf
rolling behavior are breeding targets for improving heat
tolerance (Hunt et al., 2018).

(a) Avoiding thermal damage and mortality (E1) (b) Shading via parasol effects (E3)

(c) Deadline effects (P2) (d) Tradeoffs among fitness components (P4)

(e) Hoarding and spite (C2) (f) Positive species interactions (C4)

Fig. 2 Speculative examples of the multiple
values of water to plants. Photographs are
selected to illustrate concepts, not necessarily
because they directly confirm a hypothesis. (a)
In southeastern Arizona, a cottonwood tree
(Populus fremontii) growing in hot conditions
with abundant water may use water for
evaporative cooling instead of photosynthesis
(Hypothesis E1). (b) In amoist tropical forest in
Borneo,waterused tomaintain the top layerof
a forest canopy may provide shading to
photosynthetically active leaves in lower layers
(Hypothesis E3). (c) In the northern Sonoran
Desert where winter rain is the only moisture
source before spring/foresummer drought,
water may be used as quickly as possible to
support seed production before the drought
deadline occurs (Hypothesis P2). (d) In a
tomato plant, fitness may be enhanced by
allocating water to higher fruit production
even if it reduces water available for
photosynthesis and growth (Hypothesis P4).
Image in public domain. (e) In the southern
Sonoran Desert, succulent or deep-rooted
plants may hoard water (via vegetative
storage or hydraulic descent) to prevent it
from being used by competitors (Hypothesis
C2). (f) In the alpine zone of the Rocky
Mountains, plants may use water to help
neighbors in a facilitative or mutualistic
relationship, for example, by leaf transpiration
that co-creates a more humid microclimate in
dry sites, or via investment in flowers and
flower transpiration that attracts shared
pollinators (Hypothesis C4). Photo credits: (a)
Kevin Hultine; (b, c, e, f) Benjamin Blonder; (d)
public domain.
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Cooling requires available water, which can depend both on
precipitation but also species properties like maximum rooting
depths and capacitance. For example, in hot conditions, deeply
rooted evergreen woody plant taxa, Quercus turbinella and Rhus
ovata, were shown to achieve high leaf-level transpiration rates that
were decoupled from rates of carbon uptake (Aparecido
et al., 2020). Similarly, stem gas exchange measurements
conducted on mature Carnegiea gigantea (saguaro cactus) in the
Sonoran Desert during midsummer yielded daytime transpiration
rates that at times equaled nighttime transpiration rates during
Phase I of the CAM cycle (Bronson et al., 2011). These patterns
indicate that under heat stress, giant saguaros either actively
transpire water stored in their succulent stems by opening their
stomata during the day, in turn losing carbon fixed at night –
potentially as amechanism to reduce stem surface temperatures –or
experience daytime water loss through the cuticle as surface
temperatures increase. As another example, transient shallow soil
moisture conditions enable the desert shrub, creosote (Larrea
tridentata) to take a riskier, anisohydric hydraulic strategy following
precipitation pulses in both winter and summer; while adopting a
more conservative, isohydric strategy in other periods when shallow
soil moisture is absent (Guo et al., 2020). Likewise, warm-adapted
cottonwood (Populus fremontii) – a desert riparian tree species –
increases stomatal conductance during the warmest time of the
year, unlike cool-adapted genotypes that show no seasonal changes
in stomatal conductance (Blasini et al., 2022). Consequently,
warm-adapted genotypes maintain cooler leaves than cool-adapted
genotypes, which improves carbon balance and protects against leaf
thermal damage.

E2. Minimizing respiration costs

Nighttime transpiration is observed in many species when
environments are hot (Dawson et al., 2007; Yu et al., 2019).
Reduced nighttime transpiration is recognized as a valuable
target trait for breeding crops with high water use efficiency, for
example Coupel-Ledru et al. (2016). Nighttime transpiration in
C3 and C4 plants is challenging to explain from an optimality
perspective as it results in high water costs and no instantaneous
carbon gain. An alternative explanation for this observation
involves optimization of carbon gain over longer timescales.
Cooling leaves at night via transpiration may reduce respiration
rates, which increase exponentially with temperature. This
strategy may complement or trade off with acclimation of
respiration to elevated nighttime temperature (Reich
et al., 2021). While the amount of cooling achieved by low
rates of nighttime transpiration is likely small, the effect on
carbon flux may nonetheless be significant. Reductions in
nighttime carbon losses from respiration may offset low net
carbon gains during the daytime when photosynthesis is limited
at high temperatures and respiration is high. This might occur in
hot environments where nighttime respiration is a major cost,
and only for C3 and C4 species (Wang et al., 2021). Nighttime
transpiration has also been linked to refilling of xylem embolisms
(Zeppel et al., 2014), though this may occur only under high
water potentials (Klein et al., 2018). Such an effect would in turn

benefit daytime carbon fixation, as it would enable more
sustained stomatal opening.

E3. Shading via parasol effects

In extremely hot or bright environments, upper canopy sun leaves
mayphotosynthesize suboptimally at the leaf level, but still contribute
significantly to overall plant carbon assimilation (Ishii et al., 2004;
Fig. 2b). While the morphology of sun leaves often helps maximize
convective heat losses to the atmosphere (Vogel, 2009), such leaves
may become too hot or light-saturated to efficiently carry out
photosynthesis formuch of the daylight hours andmay also require a
high water supply in order to maintain open stomata, cool via
transpiration, and avoid thermal mortality. However, this upper
canopy layer may provide sufficient shading and associated cooling
benefits to produce a canopymicroclimate that enables lower-canopy
shade leaves to photosynthesize at a lower water cost. This hypothesis
has been supported incomputermodels ofwoody species architecture
(de Haldat du Lys et al., 2022).

There is limited empirical support for positive effects on
carbon gain of shading in a Puerto Rican tropical wet forest
(Miller et al., 2021) and also in a temperate tree experiment
(Kothari et al., 2021). While leaves under moderate shade may
have lower maximum photosynthesis rates, the lower maximum
tissue temperature and lower leaf-to-air vapor pressure deficit
may enable them to avoid midday stomatal depression and
maintain photosynthesis during most of the day. Thus the
standard carbon-for-water optimization could still occur, but at
the scale of the whole plant, not the scale of a single leaf. This
strategy might occur if the relative benefit of lower-canopy leaves
exceeds the relative cost of sacrificial upper canopy leaves that act
as a parasol for the overall plant. Alternatively, sun leaves, which
are typically much shorter-lived than shade leaves (Reich
et al., 2004), might operate at high photosynthetic rate for a
while when they are young, and then continue their role as
parasols until they are replaced by new leaves. Regardless,
measurements of photosynthetic capacity that focus on sun
leaves may obscure optimization occurring at whole-plant level.

Hypotheses relating to population ecology

P1. Time discounting

In plants with ‘fast’ life histories or strong competition among
species over a common growing season, there may be substantial
benefits to carbon gained earlier in ontogeny (e.g. photosynthetic
cotyledons and early leaf flushes).Carbon acquired earlier in life can
be reinvested in the deployment of additional photosynthetic
tissue, which further accelerates growth (Chabot & Hicks, 1982).
This is because, from an economic perspective, the time
discounting rate for carbon could be large, and costs incurred later
may not be as important as benefits obtained earlier (Westoby
et al., 2000). This perspective is widely discussed in the leaf lifespan
literature (Kikuzawa & Lechowicz, 2006; Falster et al., 2012;
Castorena et al., 2022) and can be incorporated into stomatal
optimizationmodels, thoughmostmodels do not include it (Wang
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et al., 2020). Thus, high water use early on in a life cycle or in a
growing season may be optimal, even if it later leads to drawdowns
in soil moisture, stem hydraulic failure, or leaf mortality. For
example, many facultative CAM plants begin life using C3

photosynthesis, because they prioritize rapid early growth over
water use efficiency (Winter et al., 2011).

P2. Deadline effects

Related to the time discounting mechanisms, species may some-
times maximize fitness by exploiting limited resources as rapidly as
possible, for example, desert winter annuals where lifespans are
limited by the onset of an arid foresummer, or in a savanna where
locust outbreaks may occur driving fatal levels of herbivory
(Fig. 2c). As in a workplace analogy, any species that meets its
deadline (completes its life cycle) is a winner, while all others that
cannot meet the deadline are losers (Aronson et al., 1992; Peñuelas
et al., 2004). This is effectively a special case of time discounting
where the discount rate becomes infinite after a certain amount of
time. In such a case, water use may reach levels high enough to
exhaust water resources and risk vegetative tissue damage or death,
so long as it leads to successful reproduction within a minimum
time interval.

P3. Leaf lifespan effects

Species differing in their leaf lifespan (deciduous vs evergreen)
may have different water use strategies (Schulze, 1982). In
tropical species, there is often a trade-off between drought
avoidance (deciduousness) and hydraulic safety (Oliveira
et al., 2021). However, much of this data comes from
seedlings, so empirical knowledge remains limited. Deciduous-
ness may also influence water use in ways unrelated to hydraulic
safety. Drought-deciduous species do not have leaves for part of
the year and benefit from not needing to pay the water and
carbon costs of maintaining them (via transpiration and
respiration, respectively; Vico et al., 2017). However, they also
lose out on the opportunity to use water at other times of year
to support carbon uptake, as well as on the opportunity to
vegetatively compete with other species that could otherwise use
the same shared pool of soil water (note that this argument is
reversed when snowy/wintry conditions rather than drought are
considered). Deciduous species also may take more aggressive
water use strategies (Zeppel et al., 2014) when in the presence
of evergreen species or when they have evolved under
competition from evergreen species.

P4. Trade-offs among fitness components

In plants where fitness is most demographically sensitive to
variation in reproduction or survival, rather than to growth,
water may be used in ways that deprioritize carbon gain in leaves
(Fig. 2d). This could drive apparently nonoptimal stomatal
regulation at the leaf level if allocation is not correlated with
signals known to drive stomatal regulation, such as variation in
stem water potential. For example, allocation of carbon towards

osmotic regulation (e.g. for freezing responses) or storage (at the
end of a season), or allocation of water towards fruit production,
could lead to low leaf water use or leaf death, even when this
strategy is optimal for fitness overall.

Some of these strategies might be expected to be more common
in species where selection may be stronger for nongrowth fitness
components. During drought, plants might be more limited by
water than by carbon, so they may prioritize allocation to
reproduction over that to leaves, not only because of fitness but
also because water loss may be higher from leaves than from flowers
or fruits. In stressful conditions, prioritization of water for fruit
growth has been reported in Solanum lycopersicum (tomato;
Harrison Day et al., 2022) while prioritization of transpiration in
flowers occurs in Glycine max (soybean; Sinha et al., 2022), and
prioritization of storage occurs in Picea abies (spruce). There is also
increased allocation to reproduction when water is limited during
seasonal and ElNiño drought in tropical forest (Detto et al., 2018).
Similarly, some annual (monocarpic) crop species need to initiate
whole-plant senescence to remobilize and transfer assimilates to
grains (Yang & Zhang, 2006). The amount of carbohydrates fixed
before senescence can be particularly important for grain filling
(Asseng & Van Herwaarden, 2003). Therefore, leaves of annual
plants may maximize short-term assimilation in the phase just
before grain filling and senescence.

Additionally, selection may favor whole-plant survival even
when it impacts leaf performance. For example, using advective
heat transfer of xylem sap described previously, Pinus ponderosa
seedlings have been observed to maintain stem temperatures as
much as 15°C below ambient air temperature, enabling them to
survive in open forests where soil surface temperatures could exceed
75°C (Kolb & Robberecht, 1996). The lethal temperature for
stems was 63°C, so the elevated stomatal conductance found in
needles of surviving plants appears critical for whole-plant survival.
As another example, Helianthemum squamatum switches between
surface and deep water sources in dry conditions. This reduces
water use efficiency, because the switching behavior has high costs
that lead to reduced nutrient uptake, which then reduces leaf
photosynthetic capacity (Querejeta et al., 2021).

P5. Nonadaptive mechanisms

It is also possible that very high or lowwater usemay bemaladaptive
and occur as a necessary cost driven by other processes that
influence population fitness. A range of mechanisms are possible,
and increasingly being recognized. Limited phloem export capacity
or sink limitationmaymean that water is often not transpiredwhen
it is available and could be used (Fatichi et al., 2014), because any
resulting carbon gain would result in the accumulation of reaction
products and inhibit further reactions (e.g. driving the commonly
observed late afternoon depression in photosynthesis). This also
could occur if plants are adapted to lower levels of atmospheric
[CO2] than they currently experience.The sameoutcome can result
from sink limitation; reduced sink activity results in carbohydrate
accumulation in leaves, which triggers the downregulation of
photosynthesis and transpiration (Quereix et al., 2001; Li
et al., 2007).
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Additionally, the temperature dependence of cuticular con-
ductance described previously could lead to higher water use than
would be adaptive, either because it is an unavoidable biophysical
reality (Slot et al., 2021) or because of trade-offs with photo-
synthetic capacity (Machado et al., 2021).

Alternatively, correlated selection (e.g. due to genetic linkage)
could occur, resulting in nonoptimal water use being a necessary
consequence of strong selection for other traits. However, there
seems to be limited evidence for this given the omnigenic basis of
many complex traits in plants (Boyle et al., 2017). Or, in some
abiotically nonstressful environments, neither water use nor carbon
gain may be limiting to performance, when for example,
competition for pollinators or dispersers may be a priority. In such
cases, water use strategies may be variable and inexplicable from an
optimality perspective (Gould & Lewontin, 1979). While it seems
unlikely that selection does not act strongly on water use, the
alternative hypothesis should be rejected based on evidence rather
than assumption.

Hypotheses relating to community ecology

C1. Mechanisms that promote coexistence

The fitness of a population may be influenced by community
context. Mechanisms that promote coexistence effectively increase
the long-term fitness of a population. Therefore, mechanisms
influencing coexistencemay lead to selection on water use behavior
for species when they occur with other species, whether the
underlying species interactions are positive or negative. Coex-
istence mechanisms are processes that yield higher intraspecific
competition relative to interspecific competition when each species
is rare, meaning that species are able to recover from low densities
without becoming extinct (Chesson, 2000). These coexistence
mechanisms necessarily operate at scales beyond that of the
individual or population.

Temporal niche partitioning is one suchmechanism. If water is a
key resource, then some species may perform better only when
water availability is consistent over time and space, while others
may performbetter whenwater availability is variable over time and
space. Thus, some species may appear to use nonoptimal water use
strategies when measured in a constant environment, when in fact
their strategy is optimal for population dynamics when environ-
ments fluctuate (Chesson et al., 2004).

Spatial niche partitioning is another mechanism. If species
exploit water at different soil depths, there may be reductions in
interspecific competition mediated by shifts in species’ water use
efficiencies or timing of water use (as droughts affect each depth
differently) and potential impacts on ecosystem water use and
community diversity. Evidence for complementarity and parti-
tioning remains mixed (Verheyen et al., 2008; Bachmann
et al., 2015; Guderle et al., 2018). Alternatively, hydraulic
redistribution of moisture between soil depths (Richards &
Caldwell, 1987; Caldwell et al., 1998) could instead drive
facilitation or increased interspecific competition (Dawson, 1993).
Deeply rooted plants have the potential to engineer the thermal
environment of whole communities, not only by providing added

soil water via hydraulic lift (Dawson, 1993) but also by modifying
the humidity of the shared near-surface environment in a
community.

The storage effect is an additional mechanism that can operate if
water availability varies over time or space. If some species have
differential responses to water availability, then in ‘good’ years they
may be able to store these gains as larger population sizes or
seedbanks, while having a relatively small negative effect on their
populations in ‘bad’ years. This mechanism is known to operate in
SonoranDesert annual plants (Venable & Pake, 1999), which vary
widely in their water use efficiency (Angert et al., 2009). Succulents
might also be able to store water formultiplemonths or years before
using it, yielding a lagged version of the storage effect. This
population buffering mechanism means that species that have
nonoptimal water use within bad years may be buffered from
negative consequences due to their success in good years.

C2. Hoarding and spite

In other cases, fitness may not be maximized by coexistence, but
rather by resource preemption (Fig. 2e). Species may succeed by
using soil water to cause the local extinction of other species. The
balance between facilitation and competition is known to shift as
soil water becomes more limiting (Holmgren et al., 1997;
Haberstroh & Werner, 2022). Resource preemption may thus
arise only under stressful circumstances (i.e. not likely in very wet
environments, or in those with many species present, or for small-
sized plants).

Resource preemption can occur via hoarding. Plants could
rapidly acquire soil moisture and then store it in tissues or via
capacitance, after which they can transpire it at any future time
while also preventing other plants from using it, as might occur
for desert plants like agaves, various columnar cacti, or baobabs.
Alternatively, they could redistribute it to deeper soil (hydraulic
descent) and make it unavailable to shallow-rooted competitors
but available to themselves. This may occur primarily in
environments where precipitation events are rare. Hoarding
does occur for carbon and other nutrients in plant–fungal
interactions, wherein fungi withhold transfer of mineral
nutrients until the plant provides a higher amount of carbon
in return (van’t Padje et al., 2021a,b), suggesting hoarding may
also occur among plants.

Resource preemption can also occur via spite. Aggressive water
use can manifest as exuberant transpiration. General theory for
spite has been developed (Hamilton, 1970), but these ideas are not
yet included inmodels of plant water use.However, if a species uses
soil water quickly, it could make that water unavailable to other
species. Spite would only be successful in cases where one species is
able to cause greater harm to all other species than it causes to itself
through such aggressive soil water use. Such an idea is consistent
with the minimum resource level concepts in R* resource
competition theory (Tilman, 1982). A consequential hypothesis
is that high nighttime transpiration (Wang et al., 2021) or
hydraulic descent (Hultine et al., 2003)may be examples of spiteful
water use by drought-tolerant species to harm drought-intolerant
species.
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C3. Bluffing and learning

In a community context, if all species benefit from using a common
resource (water), the optimal strategies (at individual or population
level) may differ strongly from those in a single-species context.
From this perspective, water use strategies could be viewed as a
game in which the opponent’s strategy is only partially observable.
The game can have a Nash equilibrium, that is, a stable outcome
where each species is better off retaining its strategy than switching
to a different strategy. This has been demonstrated in one stomatal
regulation model (Wolf et al., 2016) where competition causes
changes in water use efficiency under drought, and has been
considered in other allocation models (Farrior et al., 2013; Lu
et al., 2020). It has also been shown empirically in Pinus taeda
(Zenes et al., 2020), Lactuca sativa (lettuce) and Solanum
lycopersicum (tomato; Vysotskaya et al., 2011). The broader game
theory of competitive or cooperative depletion of water resources
has also been considered in human contexts (Madani, 2010) but
not widely applied to plants.

In a Nash equilibrium, the optimal strategies are often mixed,
in that they involve randomizing choice of action over some
probability distribution. This occurs because the actions taken
by other species may influence the value of the actions taken by a
focal species; additionally, each individual may have limited
information available about the resources available to other
individuals and may not know their actual strategy. Rather, each
individual may only be able to respond to observed sequences of
actions taken by another individual, for example, via rhizosphere
processes including sensing soil moisture drawdown near roots,
or chemosensing of other species’ root hormones and exudates
(Jackson, 1997; Hinsinger et al., 2005) or of other volatile cues
(Jin et al., 2021).

In simple terms, this means that, in community contexts, species
may deploy unusual behaviors. Theymay bluff with their water use,
by using more or less water than they would otherwise, to send a
false signal to others or force others to take certain actions. They
may also invest in learning, by exploring the environment through
yet-unknownmeans to better predict the current or future levels of
water availability. For example, species that pre-form buds years in
advance like Veratrum tenuipetalum (Iler & Inouye, 2013) are
effectively gambling on the future state of the environment being
favorable for photosynthesis.

C4. Positive species interactions

A fundamental premise of much water use theory and the ideas
outlined previously is that the most common interactions among
plant species are negative and often competitive. However, the
assumption of competition as the fundamental process may reflect
our biasesmore than reality (Simha et al., 2022). Instead, beginning
from a viewpoint of abundance (Kimmerer, 2020) and mutualism
(Bronstein, 2015), sharing water may actually be mutually
beneficial in many cases, especially when indirect interactions
between plants occur that aremediated by other species (Fig. 2f). As
conceptual examples, a first species could provide water to a second
species that in turn transpires it and provides beneficial cool and

shaded conditions to the first species; or the second species could
attract insects that would also pollinate or defend the first species.

Species may use water in ways that appear nonoptimal from an
individual performance perspective or from a competitive
perspective, because they produce cooperative (positive) interac-
tions. Species that aremost able to access water could redistribute it
to other species that need it (e.g. via hydraulic lift, or evaporative
cooling affecting a whole community), and in turn receive a
nonwater benefit they cannot provide for themself. Temperate trees
using water to support their own growth provide shade to some
other species that in turn grow faster than they would alone
(Kothari et al., 2021).Or, savanna trees bring upwater from deeper
soil layers and redistribute it in the more superficial root zone (i.e.
hydraulic lift), improving grass quality and attracting herbivores
(Treydte et al., 2007, 2011). Grass decomposition and addition of
urine and feces may in turn improve nutrient availability for the
trees.

C5. Negative species interactions

Mycorrhizal fungi have been implicated in changes in various
aspects of plant water use, including increased aquaporin function,
and increased root hydraulic conductivity, generally resulting in
improvedperformance ofmycorrhizal plants under drought (Lehto
& Zwiazek, 2011). They thus generally are considered to yield
positive interactions with plants. However, in the process of
maximizing their own fitness, these fungi could lead a plant into
adopting a nonoptimal water use strategy in a parasitic interaction.
Mycorrhizal fungi are known to exploitmultiple species of plants to
extract the best price for their mineral nutrients when demand is
highest (Whiteside et al., 2019). Direct transfer of water taken up
by arbuscularmycorrhizal fungi to host plants has also recently been
demonstrated (Kakouridis et al., 2022). Increases in plant
transpiration and photosynthesis also have been observed when
fungal partners are present for Linum usitatissimum (flax; Drüge &
Schonbeck, 1993) and Citrus jambhiri (rough lemon; Levy
et al., 1983), suggesting that some aspects of plant water use may
be mediated by exchanges with fungal partners. Whether and
when these interactions are negative instead of positive remains
underexplored.

Endophytes, organisms living inside leaves, may also have
negative interactions with host plants through causing nonoptimal
water use for their hosts. Minimum leaf conductance is almost
twice as high in Theobroma cacao (cacao) leaves with natural
abundances of endophytes than in leaves without endophytes
(Arnold & Engelbrecht, 2007). All plants in natural ecosystems
contain leaf endophytes (Rodriguez et al., 2009), but densities and
species assemblages vary widely, even across leaves within
individual trees (Arnold & Herre, 2003). Water loss through leaf
cuticles or from leaky stomata may thus be affected by the
abundance and perhaps identity and functional properties of leaf
endophytes, independent of the short-term carbon economy of the
leaves.

Epiphylls, plants growing on top of the leaf surface can also have
negative interactions with their host plants through water use. As
leaves of evergreen plants age, theymay accumulate epiphylls to the
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extent that exposed leaves only receive 15–45%of the sunlight they
would receive in the absence of epiphylls (Coley et al., 1993). As a
result, the photosynthetic capacity of these shaded leaves is reduced
(Anthony et al., 2002) and presumably also their water use. The
retention of such leaves that are unlikely to fix significantly more
carbon than they use in respiration appears nonoptimal fromboth a
carbon and water use perspective, unless there are other not yet
understood benefits of epiphyll presence, for example, uptake of
foliarwater (Rosado&Almeida, 2020)ornitrogen (Bentley, 1987),
or benefits of maintaining old leaves, for example, taking up space
and shading competitors.

Implications for leaf and earth system models under
climate change

These hypotheses, if supported widely by empirical data, would
require substantial revisions to extant water use theory and the leaf
and earth systemmodels they are used within. Many process-based
leaf models use the Ball et al. (1987) or Medlyn et al. (2011)
representation of stomatal conductance, in which stomatal
conductance is calculated based on a suite of environmental
variables, and notably, the photosynthetic rate and a parameter that
identifies the relationship between stomatal conductance and
photosynthesis (often referred to as g1 in thesemodels, representing
the inverse of water use efficiency). The g1 value can change within
and across species, and by plant functional category if used in a
larger-scale model. The value may also respond to processes
described by any of the above hypotheses, though such effects are
not yet implemented.

Errors in the plant water use theory currently used inmany Earth
System Models (ESMs) can have important consequences for
understanding changes in water resources, heat and precipitation
extremes, and ecosystem functioning under changing climate. This
is because the soil–plant–atmosphere continuum representations
in ESMs often use similar or the same marginal gain theory used in
leaf-scale models to calculate ecosystem stomatal conductance
(Clark et al., 2011;Massoud et al., 2019; Koven et al., 2020). There
are known inaccuracies in ecosystem water fluxes simulated by
ESMs (Li et al., 2021), which ultimately can influence other
simulated quantities like soil moisture and precipitation. Even
when average patterns and trends are simulated reasonably well,
inaccuracies canmanifest in other functions and time scales, such as
predicting future heatwave intensities and durations (Kala
et al., 2016).

A key question is whether adding complexity to ESMs would be
useful when upscaled predictions of water flux are needed (Medlyn
et al., 2017). Because ecosystem scale predictions are already usually
successful and are made without including detailed vegetation
dynamics, it is unlikely that the population and community
ecology hypotheses we outlined would require incorporation into
theory used in ESMs. However, the extreme environment
hypotheses should likely be integrated into water use theory given
existing evidence that current theory fails in some of these cases, and
because of the forecasted higher prevalence of extreme environ-
ments in the near future. We suggest that incorporation of cooling
(E1) into theory will be most productive. However, as ESMs

continue to be used to answer more complex questions related to
feedback between vegetation and climate, some of the population
and community context hypotheses may also become relevant. We
speculate that trade-offs among fitness components (P4) and
resource hoarding (C2) are the two highest priorities.

Conclusion

We have highlighted numerous hypotheses that indicate the
multiple values of water to plants and that have varying degrees of
support based on empirical observations. Not all these hypotheses
may be common, nor equally important. However, in rejecting or
supporting the hypotheses underlying them, wemay come closer to
a more complete theory of plant water use. More significantly,
many of these hypotheses may be relevant for some species and not
others, or in some environments or communities and not others,
suggesting that it will be difficult to generate a single water use
theory applicable in all situations.

We are not seeking to challenge the relevance of extant theory. It
is correct, or close enough to correct, for most scenarios that have
been of interest to date. Rather, we aim to highlight the many
additional values of water relevant to more types of plants and
environments than this theory has considered, and in doing so, to
challenge the implicit use of simple economic ideas within
ecophysiology. The alternative ideas we proposed may have
potentially large consequences for individual plants, for commu-
nity dynamics, and for ecosystem fluxes. By expanding beyond
ecophysiology to incorporate population and community ecology
– with all their uncertainties and complexities, we may achieve a
more complete understanding of plant water use.
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